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Intensity correlations in transmission and four-wave-mixing signals
intermediated by hot rubidium atoms
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We investigate the influence of the distribution of atom velocities in a hot rubidium sample on the correlation
between field-intensity fluctuations of two independently generated four-wave mixing signals and between the
transmission signals. The nonlinear process is driven by a single continuous-wave (cw) laser in a pure two-level
system due to the forward geometry with circular and parallel polarization of the input fields. The intensity cross
correlations of the four-wave mixing signals and the transmission signals present an oscillatory behavior with
a clear dependence on the power of the incident fields, which indicates a connection with Rabi oscillations. A
two-level theoretical model using stochastic differential equations to account for the mechanism of conversion
of phase noise into amplitude noise shows good agreement with our experimental results. Moreover, we show
how the response of the system is affected by the different atomic velocity groups.
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I. INTRODUCTION

The study of nonlinear interactions of light with an atomic
sample has been fundamental to understanding several prob-
lems. In particular, it is well known that some features of
the incident beams are transferred to the atoms during the
interaction process, which consequently modifies the output
light, such as the transmissions and four-wave mixing signals.
Especially in the case of phase fluctuations, the resonant in-
teraction with the atoms shifts them into intensity correlations
between the transmission beams that can be directly measured
[1].

This process, in which stochastic phase fluctuations, an
intrinsic characteristic of continuous wave (cw) diode laser
radiation, are converted to amplitude modulation during the
resonant interaction with an atomic medium, had its first theo-
retical framework given by Walser and Zoller [2]. Since then,
this process has been investigated and explored in different
ways in recent decades. As a spectroscopic technique, it pro-
vides information about the structure of the energy levels of
the resonant medium, according to the pioneering experimen-
tal work of Yabuzaki et al. [3] or as a tool to investigate the
dynamical response of quantum systems to randomly fluctu-
ating fields.

Many interesting results have been produced from the
study of these fluctuations in the light-matter interaction, such
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as the study of correlations and anticorrelations in electromag-
netically induced transparency [4–7], the control of intensity
noise correlations and the squeezing of four-wave-mixing pro-
cesses via polarization [8], and the generation of correlated
and anticorrelated fields via atomic spin coherence [9]. Part
of these works are performed in the frequency domain, where
the spectral decomposition of the noisy atomic response can
reveal resonant spectral features, and part in the time domain.

In this work, we focus our analysis on the time domain and
study the behavior of the second-order correlation function
between the intensity fluctuations of two transmission signals
and two forward four-wave mixing signals generated in hot
Rb vapor. This study differs from a previous study conducted
on cold atoms [10] since we discuss here the influence of
the distribution of atom velocities on the observed correlation
functions. Furthermore, in our theoretical treatment, we now
separate the response of the four-wave mixing (FWM) signals
from the transmission signals, which allows us to discuss the
actual contribution of the stochastic phase fluctuation to each
process. For this, we consider that the phase fluctuation in
the incident fields satisfies a Wiener process. Then we solve
the stochastic differential system of Bloch equations using
Itô’s calculus taking into account the influence of the velocity
distribution of the atoms in the heated vapor.

We observe peak correlation values over 0.9 at zero delays
(τ = 0) in transmission and four-wave mixing signals. For
nonzero delays, we can have significant anticorrelation values
depending on the intensity of the incident beams, indicating
an oscillatory behavior compatible with Rabi oscillations [11]
in the correlation functions. Similar oscillatory behavior was
also observed in a magnetooptical trap of Rb atoms [10],
together with high intensity correlations when incident beams
have circular parallel polarizations. In this case, the oscillatory
pattern is a signature of Rabi oscillations due to the interaction
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with the cold atoms, which have only zero velocity. How-
ever, as discussed in Ref. [11], observing Rabi oscillations in
a thermal vapor with a cw excitation requires some trigger
mechanism or process that can lead to abrupt excitation of the
atoms. In this sense, our theoretical model takes into account
the integration over the Maxwell-Boltzmann velocity distri-
bution, allowing us to show that an effective pulsed excitation
regime can be produced by the flight of unexcited atoms into
the region of the laser beam.

Furthermore, in the case of four-wave mixing signals, this
oscillatory behavior in the second-order correlation function
appears more evident. These features point out two interesting
characteristics of the nonlinear process: (i) the FWM signal
also contains spectral information on the atom-field interac-
tion and (ii) it shows that there is a dominant contribution from
a specific group of atoms.

In the following, in Sec. II we detail the experiment and
all the experimental results. In particular, we show the time
series of all four signals, transmission, and FWM, and the
corresponding second-order correlation functions. Moreover,
we demonstrate an oscillatory behavior in the correlations
with a clear dependence on the power of the incident fields,
which indicates a connection with Rabi oscillations. Sec-
tion III focuses on developing a simple theoretical model that
allows us to separate the response of the FWM signals from
the transmission signals. The theoretical results obtained from
the stochastic differential equations are presented in Sec. IV,
in which we detail how the system response is influenced
by the different groups of atomic velocity. We conclude by
summarizing the relevant achievements of this work in Sec. V.

II. EXPERIMENTAL SETUP AND RESULTS

In the experiment, we used a single cw laser to generate
two input laser beams labeled Ea and Eb with wave vectors
�ka and �kb, as presented in Fig. 1. These two beams with
circular and parallel polarization interact with a heated sample
of Rb atoms contained in a glass cell wrapped in μ metal
for magnetic shielding. For the temperatures with which we
typically work, T ≈ 60–70◦C, we expect an atomic density of
the order of 1011 atoms/cm3.

We are interested in the two FWM signals generated in
directions 2�ka − �kb and 2�kb − �ka, as shown in Fig. 1(b). There-
fore, we investigate processes in which two photons of one of
the beams are absorbed and one photon is emitted in the other
beam, generating new coherent signals.

The input beams are in an almost copropagating config-
uration, with a small angle of about 10 mrad between them
to allow spatial separation of all four signals. This type of
forward geometry, having both input beams with the same
intensities and polarizations, is challenging since scattered
light from one beam might arrive at the detection position of
the other beams. To avoid this problem, we detect signals far
from the cell, exploiting the spatial separation between them.
The time series of the intensity fluctuations of the two FWM
signals and the transmissions of the input beams Ea and Eb

are detected by avalanche photodiodes (APD) with a time
resolution of 1 ns.

The beams that induce the degenerate FWM processes are
tuned near the closed transition |F = 3〉 → |F ′ = 4〉 of the

FIG. 1. Simplified scheme of the experimental setup for the
detection of the intensity fluctuations time series of the four partici-
pating signals. (b) Wave vectors of the four signals (two FWM and
two transmissions). (c) Hyperfine structure of the D2 line of 85Rb.

D2 line of 85Rb [see Fig. 1(c)]. In fact, we do not lock the
frequency of the input laser; instead, we turn off the current
modulation and adjust the current so that the laser frequency
is located inside the |F = 3〉 → |52P3/2〉 Doppler valley of the
saturated absorption spectrum, at a specific detuning from the
closed transition.

The time series of the intensity fluctuations of all four
signals is presented in Fig. 2. These data are part of the 100 µs
recorded time series and have been filtered with a high-pass
ideal fast Fourier transform (FFT) filter with a cutoff fre-
quency of 500 kHz to eliminate any slow fluctuations of the

FIG. 2. Intensity fluctuations time series for (a) the transmittance
of the incident beams with Ia = Ib = 250 mW/cm2 and a detun-
ing from the closed transition of δ/2π = −250 MHz, (b) the two
symmetric FWM signals generated inside the sample with Ia = Ib =
98 mW/cm2 and δ/2π = 90 MHz, and (c) incident beams in the
absence of the Rb cell. To the right, in (d)–(f) we show the cross-
correlation curves corresponding to the time series in (a), (b), and
(c), respectively.
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signals. In Fig. 2(a), we show the time series for the transmit-
tance of the incident beams (blue and red lines) for an input
laser intensity of Ia = Ib = 250 mW/cm2 and a detuning from
the closed transition of δ/2π = −250 MHz. It is clear that
these results are very well synchronized and should present
near-perfect correlations, an expected result [1,12,13]. Sim-
ilarly, in Fig. 2(b) we show the intensity fluctuations versus
time of the two FWM signals (brown and green lines) for an
input laser intensity of Ia = Ib = 98 mW/cm2 and a detuning
from the closed transition of δ/2π = 90 MHz. It is again
noticeable that the fluctuations behave similarly, even though
they are not identical. For comparison, we also present in
Fig. 2(c) the time series of the transmission of the incident
beams in the absence of the Rb cell. It is clear that, in this case,
as there is no medium to promote the conversion between
phase-to-amplitude-noise, the intensities of the two pumps
appear completely uncorrelated.

The correlations between the detected signals can be
quantified with the second-order correlation function G(2)

i j (τ )
[1,9,12,13] for the intensity fluctuations of two optical beams
with time delay τ . It is given by

G(2)
i j (τ ) = 〈δIi(t )δI j (t + τ )〉√〈δIi(t )2〉〈δI j (t + τ )2〉 , (1)

where δIi, j (t ) = Ii, j (t ) − 〈Ii, j (t )〉 are the time-dependent in-
tensity fluctuations with 〈Ii, j (t )〉 being the average intensities
of the laser fields and i, j = a, b, s1, s2 the labels to designate
the two input fields and the two FWM signals, respectively.

We present the intensity fluctuations correlation func-
tions G(2)

i j (τ ) on the right side of Fig. 2. Figures 2(d)–2(f)
correspond to the pairs of time series of Figs. 2(a)–2(c), re-
spectively. These correlation functions have peaks at zero time
delay with amplitudes (Pearson coefficient) of ≈0.87 for the
transmission signals in Fig. 2(a) and more than 0.92 for the
FWM signals in Fig. 2(b). This confirms a strong temporal
positive correlation in the intensity fluctuations of the output
signals. Moreover, a null correlation function for Fig. 2(c),
without sample, is a clear signature that the cross correlation
that we observe in the transmission beams arises from the
resonant phase-noise to amplitude-noise conversion [2,14–
17]. The resonant interaction with the atoms plays a critical
role in this result. There would be no correlation if there were
no atoms or if the input laser was not near resonance.

Furthermore, the results indicate that this conversion also
occurs with FWM signals, generating correlated fields. This
is noteworthy because, although these two FWM signals are
excited by the same beams with the same phase fluctuations,
they come from processes that cannot occur simultaneously
since a single atom can only generate one of the two FWM
signals at a time. As we shall see later, they can also provide
information about the temporal dynamics of a set of atoms
that interact simultaneously with the same driving fields. The
correlation between the fields generated by FWM was ob-
served in a similar experiment using cold atoms when only the
stationary group of atoms (v = 0) contributed to the process.
Here, with a system of hot atoms, we need to consider the
Maxwell-Boltzmann velocity distribution. In the next section,
we build a simple model that considers the velocity distribu-
tion and provides information on how the phase fluctuations of

FIG. 3. Second-order correlation function G(2)
i j (τ ) between

(a) the transmitted signals and (b) the FWM signals, for different
intensities, Ia = Ib = I , at the entrance of the cell. The inset shows
cross-correlation curves for the same experimental conditions Ia =
Ib = 71 mW/cm2 with different average signal values at the detector.

the input laser manifest themselves in both transmission and
FWM processes.

In Figs. 3(a) and 3(b), we present the second-order cor-
relation function between transmission signals and between
FWM signals for different intensities of incident beams at
the entrance of the cell. All the results are for circular and
parallel polarization. In both figures, the intensity increases
from top to bottom. The correlation curves in Fig. 3(a) were
obtained from transmission measurements for a fixed detuning
of δ/2π = 235 MHz and beam diameter of 600 µm. In con-
trast, Fig. 3(b) presents FWM measurements taken for a fixed
detuning of δ/2π = 90 MHz and a beam diameter of 2.2 mm.
The larger beam diameter is important for obtaining a good
FWM signal. It is clear that there are regions of correlation
G(2)

i j (τ ) > 0 and regions of anticorrelation G(2)
i j (τ ) < 0, for

both signals. Intensity correlation and anticorrelation in the
transmitted beams were also reported in Ref. [12], with a simi-
lar experiment using atomic vapors, perpendicularly polarized
input beams, and a magnetic field to break the degeneracy
of the Zeeman sublevels. This experiment was performed
under electromagnetically induced transparency (EIT) con-
ditions, and the authors showed that the transition between
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correlation and anticorrelation of the fields can be controlled
with the magnetic field, changing the detuning of the two-
photon resonance. In our experiment, no external magnetic
field is introduced, and we work with a two-level system
defined by circular and parallel polarized incident beams.
Another relevant point concerns the correlation between the
FWM signals. Our experimental conditions, defined by the
polarization of the input beams, also explain why we observe
a positive correlation between these signals and not a compe-
tition between them, as described by Yang et al. [9].

The most remarkable feature of these results is that the
correlation curves indicate an oscillatory behavior for short-
time delays (−100 ns < τ < 100 ns), with the central peak
becoming broader as the input laser intensity decreases. This
behavior is clearer in the FWM signal. We also indicate the
value of the peaks at zero time delay (Pearson coefficient)
for each curve. For the transmission signals, in Fig. 3(a),
the Pearson coefficient is quite low for high incident beam
intensities and increases as we decrease the input beam in-
tensity. This is expected since, for high intensities, part of the
beam passes directly through the sample without interacting
with the atoms, so that the phase-modulation to amplitude-
modulation conversion process does not occur, resulting in
poor intensity correlation. However, the FWM signal is only
generated due to the interaction of the fields with the atomic
medium; therefore, the greater the intensity of the laser beams,
the greater the intensity of the generated signal and, thus, the
Pearson coefficient.

Another feature that might influence the Pearson coeffi-
cient is the signal-to-noise ratio (SNR). From an experimental
standpoint, one must ensure optimal SNR, as the inset in
Fig. 3 indicates. In this graph, we show that for the same
conditions, as the average amplitude of the signal decreases
using a neutral density filter, the peak value of the correlation
decreases as well. We believe that the connection with the
SNR relies on the fact that, for a smaller signal, more of
the uncorrelated background noise of the detector (an APD)
affects the correlation.

In terms of oscillatory behavior, with correlation and an-
ticorrelation regions, it is very similar to what was observed
with a sample of cold atoms [10]. In that previous work, hav-
ing only atoms with v = 0 participating in the atom-radiation
interaction, it was possible to obtain a detailed map of the
correlation as a function of detuning and then verify that
these oscillations in the second-order correlation function are
connected to the generalized Rabi frequency of the input
laser. However, for the present experiment, this last statement
needs to be carefully analyzed. First, we indeed have a clear
oscillation in the second-order correlation function for both
transmission and FWM signals, as shown in Fig. 3. However,
with a hot sample, the detuning cannot be well defined for a
fixed laser frequency if we consider all the atomic velocity
groups inside the Doppler line.

A Fourier analysis of the curves in Fig. 3 indicates that they
have a spectral component whose frequency is proportional to
the intensity. To investigate in detail this behavior, we plot
in Fig. 4, for the transmission signals, the frequency of the
oscillation in the correlation as a function of the square root of
the input intensity of each beam for three detuning values. The
frequency value for each detuning is represented by a different

FIG. 4. Frequency of the oscillation in the correlation function
for the transmitted signals as a function of the square root of each
beam intensity at the cell’s entrance, for three detuning values. The
dots are the average values for three measurements, the solid lines
are a guide for the eye, and the filled regions indicate the errors.

symbol (color). Taking into account the errors in the frequency
values (shaded regions), we have a good superposition of
the three curves. It is important to note that as the detuning
increases (going away from the Doppler center), the input
beams should be absorbed less, so we should expect a higher
intensity and, therefore, a higher oscillation frequency, as we
observe.

The nearly linear behavior shown in Fig. 4 is clear evidence
that these oscillations are connected to the Rabi frequency of
the input beams. This indicates that in the conversion process
between phase fluctuations of the laser into intensity fluctu-
ations through the interaction with the atomic medium, the
intensity fluctuations oscillate with approximately the gen-
eralized Rabi frequency. Similar behavior was described by
Papoyan and Shmavonyan when they observed the temporal
structure in atomic absorption signal under excitation by a cw
phase-diffusion field [11]. They argue that this fact is due to
the nonadiabatic temporal component of the atom’s response,
manifesting itself as population variations oscillating at the
Rabi frequency [18]. Furthermore, they also considered that
the time of flight could not make a significant contribution and
that the effective pulsed excitation is caused by the stochastic
phase-fluctuating nature of a cw laser radiation field. In this
sense, we also could expect to see this oscillation in our raw
data, that is, in the time series of Fig. 2. However, they are
not discernible in this case, although we perform the measure-
ments with a temporal resolution of 1 ns. In fact, a Fourier
analysis of those data does not reveal any spectral component
in particular.

However, we can make use of a higher-order measurement,
which should be able to retrieve the spectral information of
the system [19,20]. This is possible with the intensity fluctua-
tions correlation function G(2)

i j (τ ), which exhibits a noticeable
spectral component, as can be seen in Fig. 3, and confirmed
by the Fourier analysis of the transmission signals in Fig. 4.
The intriguing feature here is the reason behind the fact that,
for a fixed laser frequency, the contribution of different group
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velocities (inside the Doppler line), with different generalized
Rabi frequencies, does not blur these oscillations. As we will
see in the next section, only the resonant atoms have a dom-
inant contribution during the transient time, confirming that
the nonadiabatic temporal component of the atom’s response
is the main mechanism. Moreover, we also confirm that for the
present experiment, the effective pulsed excitation is triggered
by the time of flight.

III. THEORETICAL MODEL

We consider a phase fluctuation in the incident fields that
satisfies a Wiener process, and we employ the model given in
Ref. [1] to explain the main features observed in our corre-
lation results. In particular, our treatment to solve the Bloch
equations allows us to obtain an independent response for
each signal, transmission, and FWM. By integrating over the
Maxwell-Boltzmann velocity distribution, we can compare
our theoretical results with each of the signals and analyze
the main contributions.

The treatment of the problem begins considering a two-
level system with a total Hamiltonian Ĥ = Ĥ0 + Ĥint, where
Ĥ0 is the free-atom Hamiltonian and the interaction Hamilto-
nian is Ĥint = −μ̂ · �E , where μ̂ is the electric dipole operator
and �E = �Ea + �Eb is the total electric field.

The input fields with circular and parallel polarizations are
represented by

�Ea = 1
2 [εa(t )ei(ωat+φ(t )−kaz)σ̂+

a + c.c.],

�Eb = 1
2 [εb(t )ei(ωbt+φ(t )−kbz)σ̂+

b + c.c.], (2)

where εl is the amplitude of the electric field; ωl is the optical
frequency, φ(t ) is the fluctuating phase, �kl is the associated
wave-vector, and c.c. means the complex conjugate.

We consider that the electric fields have a fluctuating phase
φ(t ), described by a Wiener-Levy diffusion process [21].
For these processes, the average of the stochastic variable
is zero and the average of the two-time correlation is given
by 〈φ̇(t )φ̇(t ′)〉 = 2Dδ(t − t ′); where D is the diffusion coeffi-
cient. Often in the literature, the stochastic process chosen to
represent this phase is the Ornstein-Uhlenbeck [22,23], which
includes an extra term to the Wiener process to make it mean
reversible.

The nonlinear interaction of the input beams, Ea and Eb,
with the two-level system, leads to the generation of signal
2�ka − �kb, due to the absorption of two photons from beam Ea

and the stimulated emission of one photon from beam Eb, and
signal 2�kb − �ka due to the absorption of two photons from
Eb and the stimulated emission of one photon from Ea, as
illustrated schematically in Fig. 5.

The matrix elements of Ĥint can be written as

Hint,12 = −h̄
∑

l

	l e
i(ωl t−kl z) + c.c., (3)

where 	l ≡ μ jkεl

2h̄ (l = a or b) is the Rabi frequency with
μ jk being the transition dipole moment. The density operator
ρ̂ = ∑

jk ρ jk| j〉〈k| describes the state of the atomic ensemble
and satisfies

∑
j ρ j j = 1, and ρ jk = ρ∗

k j , where the asterisk
means complex conjugation. Its time evolution is given by

FIG. 5. Schematic representation of the four-wave mixing para-
metric processes in a two-level atom generating the FWM signals
(a) (2�ka − �kb) and (b) (2�kb − �ka).

Liouville’s equation with a relaxation term L̂ associated with
spontaneous decay from |2〉 to |1〉,

d ρ̂

dt
= i

h̄
[ρ̂, Ĥ ] + L̂. (4)

In our model, populations and coherence decay at rates � jk

and γ jk , respectively. With this, we obtain the optical Bloch
equations for the two-level system

�ρ̇ = −2i

h̄
[ρ12Hint,21 − c.c.] − �21[�ρ − (�ρ)0],

ρ̇12 = − i

h̄
[Hint,12�ρ − ρ12 h̄ω21] − γ12ρ12, (5)

where �ρ = (ρ22 − ρ11) is the population difference and
(�ρ)0 is the population difference far from the region of
interaction with fields Ea and Eb and ω jk is the frequency of
the | j〉 → |k〉 transition.

The problem of a two-level system interacting with two
strong fields has been addressed in Refs. [24–26], and Eqs. (5)
are solved for arbitrary pump intensities assuming that the ele-
ments of the density operator oscillate with an infinite number
of frequencies, associated with the various Fourier compo-
nents. In these works, the nonlinear coherence related to FWM
processes is found in terms of a recursive formula. Here,
we employ a simpler solution method, similar to the treat-
ment found in [27]. We consider three-photon interactions
for the coherence describing the FWM process at frequencies
2ωa − ωb and 2ωb − ωa and two-photon interactions for the
population of the two levels. We, therefore, express the coher-
ence in terms of the Fourier components

ρ12 = ρ
(ωa )
12 eiωat + ρ

(ωb)
12 eiωbt

+ ρ
(2ωa−ωb)
12 ei(2ωa−ωb)t + ρ

(2ωb−ωa )
12 ei(2ωb−ωa )t . (6)

The two components ρ
(2ωa−ωb)
12 and ρ

(2ωb−ωa )
12 are responsi-

ble for the FWM processes that generate the two nonlinear
signals. The population difference �ρ has a stationary com-
ponent and one oscillating at |ωa − ωb|,

�ρ = (�ρ)dc + (�ρ)(ωa−ωb)ei(ωa−ωb)t

+ (�ρ)(ωb−ωa )e−i(ωa−ωb)t . (7)

We now substitute Eqs. (3), (6), and (7) into Eqs. (5) and
collect terms that oscillate with the same frequency. The terms
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for coherence, taking into account the inhomogeneous Doppler broadening, are given by

ρ̇
(ωa )
12 = i	a(
ρ)dc + i	b(
ρ)(ωa−ωb) − [i(δa − kav) + γ12]ρ (ωa )

12 + iφ̇ρ
(ωa )
12 ,

ρ̇
(ωb)
12 = i	b(
ρ)dc + i	a(
ρ)(ωb−ωa ) − [i(δb − kbv) + γ12]ρ (ωb)

12 + iφ̇ρ
(ωb)
12 ,

ρ̇
(2ωa−ωb)
12 = i	a(
ρ)(ωa−ωb) − {i[(2δa − δb) − (2ka − kb)v] + γ12}ρ (2ωa−ωb)

12 + iφ̇ρ
(2ωa−ωb)
12 ,

ρ̇
(2ωb−ωa )
12 = i	b(
ρ)(ωb−ωa ) − {i[(2δb − δa) − (2kb − ka)v] + γ12}ρ (2ωb−ωa )

12 + iφ̇ρ
(2ωb−ωa )
12 , (8)

and for population

˙(
ρ)
dc =2i

[
	∗

aρ
(ωa )
12 + 	∗

bρ
(ωb)
12 − 	aρ

(ωa )
21 − 	bρ

(ωb)
21

] − �21[(
ρ)dc − (
ρ)0],

˙(
ρ)
(ωa−ωb) =2i

[
	∗

bρ
(ωa )
12 + 	∗

aρ
(2ωa−ωb)
12 − 	aρ

(ωb)
21 − 	bρ

(2ωb−ωa )
21

] − {i[(δa − δb) − (ka − kb)v] + �21} × (
ρ)(ωa−ωb),

˙(
ρ)
(ωb−ωa ) =2i

[
	∗

aρ
(ωb)
12 + 	∗

bρ
(2ωb−ωa)
12 − 	bρ

(ωa )
21 − 	aρ

(2ωa−ωb)
21

] − {[i(δb − δa) − (kb − ka)v] + �21} × (
ρ)(ωb−ωa ), (9)

where δl ≡ ωl − ω21 and kl are the detuning and wave number
of field El . As indicated by the set of Eq. (8), this treatment
allows us to separate the response of each signal, transmission,
and FWM, which are described by the ρ12 coherence.

Since the set of Eq. (8) contains stochastical terms, we must
solve them numerically using Itô’s calculus. As previously
mentioned, we take a typical stationary stochastic process,
the Ornstein-Uhlenbeck process, to describe the phase fluctua-
tions. This process satisfies the stochastic differential equation
(SDE):

dXt = α(γ − Xt )dt + βdWt , (10)

where the Itô’s diffusive process dXt has a deterministic part
and a stochastic one. The deterministic term, the first one, has
a magnitude of the mean drift α while the asymptotic mean
is γ . If Xt > γ the drift will be negative and the process will
go towards the mean. If Xt < γ then the opposite happens, the
drift is positive and the process moves away from the mean.
As for the stochastic part, it is a Brownian motion Wt with a
magnitude constant β.

We solve the system of SDEs using a stochastic Runge-
Kutta for the scalar noise algorithm. This algorithm possesses
good accuracy for our problem, with a thin distribution of
residuals. We also use the same Brownian increment dWt for
both one-photon coherences, as the original fluctuation comes
from a single laser. Finally, we probe several choices of pa-
rameters of the Ornstein-Uhlenbeck process, but the outcomes
are not drastically different as long as the variance of the
process, given by β2/2α, is small.

A numerical simulation is performed for each velocity
value and then added following the Maxwell-Boltzmann ve-
locity distribution. The addition is done at each instant of time,
and the numerical calculations for the set of velocities use
the same noise seed. Once this step is completed, we have
access to the theoretical time series of all elements of the
density matrix, taking into account the contribution of every
atom in the cell. Therefore, for each of these terms, we can
calculate the second-order correlation function for intensity
fluctuations. However, we must establish the link between
the density-matrix elements and the actual detected signal. To
do so, we solve the wave equation derived from Maxwell’s
equations, neglecting the transverse derivatives of the electric
field.

With a few algebraic manipulations and using the adia-
batic and nondepleted beam approximations, we can obtain
decoupled differential equations for transmitted beams ∂	l

∂z =
iκ12ρ

(ωl )
12 , and for the FWM generated beams ∂	

(r)
FWM
∂z =

iκ12ρ
(r)
12 , where l = a or b, r = 2ωa − ωb or 2ωb − ωa, and

κ12 = ωl Nμ2
12

2h̄ε0c , with N being the number of atoms. Solving
these equations leads to the fields we detect in the experiment
after they propagate in the sample. To do this, we use the
fact that the cell length L is smaller than the Rayleigh length
of the fields at play. Therefore, it is adequate to consider
the thin-medium regime, which implies that we can make
use of the equations in Ref. [1] and rewrite the second-order
correlation function of the intensity fluctuations of Eq. (1) for
transmissions as

G(2)(τ ) =
〈
Im

(
δρ

(ωa )
12 (t )

)
Im

(
δρ

(ωb)
12 (t + τ )

)〉
√〈[

Im
(
δρ

(ωa )
12 (t )

)]2〉〈[
Im

(
δρ

(ωb)
12 (t )

)]2〉 , (11)

and for the FWM signals as

G(2)(τ ) =
〈
Im

(
δρ

(2ωa−ωb)
12 (t )

)
Im

(
δρ

(2ωb−ωa )
12 (t + τ )

)〉
√〈[

Im
(
δρ

(2ωa−ωb)
12 (t )

)]2〉〈[
Im

(
δρ

(2ωb−ωa )
12 (t )

)]2〉 .

(12)

To obtain this last result, we neglect second-order terms when
calculating the field intensity.

A similar theoretical analysis of the correlation between
field intensity fluctuations of two FWM signals generated in
a two-level system is presented in Ref. [28]. In that work, the
authors focused on the problem of a sample of cold atoms
(v = 0) and studied the behavior of the correlation function
G(2)

i j (τ ) as the detuning of the driven fields varies. However,
our experiments are performed in an atomic vapor, so the
velocity distribution needs to be taken into account. Another
important aspect is that we measure both the transmit signal
and the FWM signal, so it is interesting to compare both.
This is discussed in the next section, where we present our
theoretical results.
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FIG. 6. (a) Numerical simulation of a time series for the trans-
mission Im(ρ (s=ωa )

12 ) (green) and FWM Im(ρ (s=2ωa−ωb )
12 ) (red) signals

with input Rabi frequency 	a = 	b = �, detuning from the excited
state of δ/2π = 30 MHz and taking into account the velocity groups
−0.2u < v < 0.2u. (b) Cross correlation between transmitted sig-
nals (green) and FWM signals (red), for the time series of (a). The
inset shows the cross correlation when the transient is not taken
into account. (c) Cross correlation between transmitted signals con-
sidering the contribution of different velocity groups. (d) Transient
dynamics of (
ρ )(ωb−ωa ) for different velocity groups. The inset is
the zoom for v = 0.05u and v = 0.1u.

IV. THEORETICAL RESULTS

After solving the coupled SDE system, we have a numer-
ical simulation of the time series for the transmission and
FWM signals. An example of a single realization of such a
series for both signals, transmission (green) and FWM (red),
is presented in Fig. 6(a) for a detuning of δ/2π = 30 MHz,
a Rabi frequency 	a = 	b = � and taking into account the
velocity groups −0.2u < v < 0.2u, where u is the most prob-
able velocity. In the first 1 µs of the simulated signal, we draw
attention to the transient regime, where both series present an
oscillatory behavior, with an abrupt variation of the transmis-
sion signal due to the term of population difference dc. We
also show, in the inset, a zoom-in of the time series (for trans-
mission and FWM signals) away from the transient response.
Employing Eq. (13), we calculate the second-order correlation
function for the series of Fig. 6(a) and present the results in
Fig. 6(b). Since we use the same Brownian increment dWt for
both signals, they must be perfectly correlated, as in Fig. 6(b).
It is easy to introduce different increments for each input
field and control how large their correlation is by stating that
dW (1)

t = dW (2)
t +

√
1 − ρ2dW (3)

t , where ρ ranges from zero
to one; that is, one increment is equal to the other with the
addition of a third increment. However, we use a single cw
laser, so the stochastic phase each input field carries should be
the same. The result shown in Fig. 6(b) can be compared with
that obtained from the experiment as shown in Fig. 3(a) for
the transmitted beams and in Fig. 3(b) for the FWM signal.
Although in the experiment it is difficult to obtain a good

FIG. 7. Dominant oscillation frequency of the cross-correlation
function between transmitted signals considering velocity groups
−0.5u < v < 0.5u (green squares), and of the (
ρ )(ωb−ωa ) for ve-
locity groups v = 0 (red circles) and v = 0.1u (blue triangles), as a
function of the pump Rabi frequency 	/γ .

correlation in the same experimental conditions in both sig-
nals, this is not true for the autocorrelations calculated from
the theoretical time series. As shown in Fig. 6(b) both corre-
lations present an oscillatory behavior, close to τ = 0, very
similar to that observed in the experiment. The existence of a
difference in the oscillation frequency between the two signals
is not very clear, and a careful investigation, including experi-
mental verification, is in progress. It is interesting to note that
if we neglect the transient regime, the shape of the peak in the
second-order correlation function changes, it becomes similar
to a delta function [see inset of Fig. 6(b)], which indicates the
presence of only white noise. This behavior indicates that the
transitory period is essential for observing oscillations.

Another significant feature is the contribution of velocity
distribution in a vapor. This can be better understood if we
analyze the second-order correlation function for different
velocity groups, as shown in Fig. 6(c). We see almost no
variation in the second-order correlation function when we
consider the contribution of velocity groups in the range
greater than −0.2u < v < 0.2u. This result is an indication
that only the atoms close to the resonance make a real contri-
bution to the central peak of G(2)(τ ). In addition, we also need
to consider the effect of the transient dynamics of the atomic
response. Figure 6(d) shows how (
ρ)(ωb−ωa ) varies during
the transient regime for different velocity groups. We see that
the Rabi oscillation of atoms with a velocity equal to or greater
than 0.1u is smaller than one order of magnitude compared to
atoms at resonance. These results confirm that only atoms at
or near resonance are actually responsible for the shape of the
central peak of G(2)(τ ) and that the observed oscillation near
τ = 0 is due to the transient regime and is connected to the
Rabi frequency.

A graph similar to the one shown in Fig. 4, for the
dominant oscillation frequency of the cross-correlation func-
tion, F[G(2)(τ )], is presented in Fig. 7 for the transmission
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signals, considering velocity groups −0.5u < v < 0.5u
(green squares). We also plotted F[(
ρ)(ωb−ωa )] in the veloc-
ity groups v = 0 (red circles) and v = 0.1u (blue triangles),
as a function of the pump Rabi frequency 	/γ . The results
confirm that the frequency of oscillation that we see in the cor-
relation curves has the largest contribution from the resonant
atoms. Furthermore, they argue that this oscillation frequency
in G(2)(τ ) is indeed well described by the generalized Rabi
frequency.

It is important to reinforce that this oscillating behavior has
already been observed in experiments carried out in a cloud
of cold atoms [10]. However, in a vapor, we would expect this
signature to be erased because of atomic motion. One could
expect that the Doppler integration would blur these oscilla-
tions since the correlation curve would contain the response
of several velocity groups. In this sense, to observe a clear
signature of oscillatory behavior, some aspects are really fun-
damental. First, as we show, the transient regime is essential,
and therefore, a short initial excitation pulse is required. In
our system, the effective pulse excitation is determined by the
flight of atoms within the laser beam. For a mean thermal
velocity of Rb atoms u ≈ 2.5 × 104 cm/s, the flight of an
atom into the light beam corresponds to a pulse with a duration
of a few µs. Another fact is related to our detection resolution,
of the order of 1 ns, determined by the APDs. However, these
two points are not sufficient to observe the Rabi oscillation
directly from the time series, as reported in Ref. [11]. We
need to go to a higher-order measurement to be able to re-
cover the spectral information of the system. In particular,
we use the intensity-fluctuation correlation function G(2)(τ ),
which presents a noticeable spectral component, as indicated
by the experimental results and confirmed by our theoretical
treatment.

V. CONCLUSION

Our study investigates the influence of the atomic velocity
distribution on the correlation between intensity fluctuations
of the transmission and FWM signals in hot rubidium vapor.
We present experimental and theoretical results that demon-
strate an oscillatory behavior in the correlations, strongly
dependent on the intensity of the incident fields. This behavior

is a clear signature of Rabi oscillations, which are preserved
even in the presence of the Doppler broadening.

Notably, we observe that this oscillatory behavior in the
second-order correlation functions is more pronounced in the
FWM signals. This highlights the nonlinear process’s ability
to retain spectral information about the atom-field interaction,
even in an inhomogeneously broadened sample. The results
also suggest a dominant contribution from specific velocity
groups, emphasizing the relevance of transient excitation and
detection resolution in resolving these oscillatory features.

Our theoretical model, based on stochastic differential
equations and incorporating the Maxwell-Boltzmann velocity
distribution, agrees well with the experimental data. One of
the model’s achievements is showing that the near-resonant
group velocities are the main cause of the correlation, and
consequently, the Rabi oscillation we measure. Moreover,
the model separates the transmission from the FWM signal,
although we believe more data are needed to confirm its
agreement with the nonlinear signal.
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